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Abstract 

We present a surface compression method that stores 
surfaces as wavelet-compressed signed-distance volumes. 
Our approach enables the representation of surfaces with 
complex topology and arbitrary numbers of components 
within a single multiresolution data structure. This data 
structure elegantly handles topological modijication at high 
compression rates. Our method does not require the costly 
and sometimes infeasible base mesh construction step re- 
quired by subdivision surface approaches. We present 
several improvements over previous attempts at compress- 
ing signed-distance functions, including an 0 (n) distance 
transform, a zero set initialization method for triangle 
meshes, and a specialized thresholding algorithm. We 
demonstrate the potential of sampled distance volumes for 
surface compression and progressive reconstruction for 
complex high genus surfaces. 

1. Introduction 

The rapid increase in computing power and advance- 
ments in surface acquisition techniques have enabled the 
creation of meshes of 400 million triangles and larger 
[ 18, 151. This has led to a dilemma in surface visualization: 
meshes of this size and complexity require both efficient 
compression techniques and a capacity for level-of-detail 
interrogation. Progressive compression algorithms enable 
both efficient compression and level of detail reconstruc- 
tion. A progressive compression algorithm re-orders the bit 
stream in such a way that the most relevant information is 

near the front of the stream. Thus, with a small number 
of bits a usable approximation of a surface can be obtained 
for interaction and browsing. This paper presents a sys- 
tem for progressively compressing surfaces via a signed- 
distance representation. Our approach efficiently represents 
complex surfaces with arbitrary numbers of components, 
removes the need to explicitly store the topology of the sur- 
face, and can be extended to time-varying surfaces. 

Recently, subdivision surfaces have been shown to be ef- 
fective for surface compression as the connectivity informa- 
tion only needs to be stored for the base mesh. The work 
of Khodakovsky [14] and Bertram [2] show that wavelet- 
based techniques on subdivision surfaces result in compet- 
itive compression rates and allow for progressive decom- 
pression. However, subdivision techniques require a coarse 
base mesh. Base mesh construction for large and complex 
surfaces with many components is difficult and often in- 
feasible. Even if a base mesh is produced, a surface with 
hundreds or thousands of components requires topological 
modification in order to achieve usable progressive recon- 
structions. 

In this paper we advocate an alternative approach to sur- 
face compression which is based on a signed-distance vol- 
ume representation [26, 61. A signed-distance volume is 
a trivariate function encoding the minimum distance to a 
surface for each volume sample. The sign changes as the 
surface is crossed. Figure 1 depicts the data flow in our sys- 
tem. The resulting compressed surface is reconstructed by 
extracting the isosurface with zero distance. 

The signed-distance representation does not directly 
specify the topology of the surface. This freedom from stor- 
ing the topology increases the potential for using simple al- 
gorithms that will extend elegantly to high genus surfaces 
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Figure 1. The compression system comprises 
four modules. The input surface is trans- 
formed into a distance representation then 
decomposed into linear B-spline wavelet co- 
eff icients. A thresholding algorithm is ap- 
plied that sets a large number of wavelet co- 
efficients to zero. The distance information 
is used to insure that the surface geometry is 
retained. Finally, a zero-tree coder produces 
the progressive bit stream. 

and time-varying surfaces. We achieve a multiresolution 
representation by applying a linear B-spline wavelet decom- 
position to the implicit function. Compressing multiresolu- 
tion signed-distance functions has been studied in [8, 71. 
Our contribution is a complete system that overcomes the 
problems of existing distance-based compression methods. 
The main features of our method are as follows: 

1. Progressiveness: we generate a progressive encoding 
of the distance function which can be partially recon- 
structed from the most relevant bits of the most rele- 
vant wavelet coefficients. The implicit nature of our 
representation facilitates topology modification to re- 
duce the complexity of the approximate surfaces be- 
yond what is attainable by subdivision surface meth- 
ods. 

2. Scalability: the method is not limited by the need to 
re-map a complex surface to a base mesh with subdi- 
vision connectivity. Our thresholding method removes 
wavelet coefficients that do not contribute to the zero 
set resulting in a size related to the surface complexity. 

3. Simplicity: the distance volume representation dis- 
penses with a lot of the algorithmic complexity associ- 
ated with base mesh construction and explicit topology 
tracking. All operations in our method are performed 
on regularly sampled volumes. 

4. Autonomy: the algorithm requires only a desired bit 
count in order to produce a compressed file. This is 
in contrast to subdivision methods which may require 
explicit base mesh vertex positioning for sharp features 
[14], editing operations [ 111, or multiple fitting param- 
eters for obtaining the base mesh [ 11. 

2. Related Work 

Wavelet transforms have been used to obtain multireso- 
lution representations of scalar volume data for rendering 
and compression [19, 20, 21, 9, 101. Tao [23] describes a 
system for progressively transmitting volume data encoded 
as wavelet coefficients. Volume compression techniques 
[18, 131 based on wavelet transforms have been used to 
facilitate the visualization of large data sets. The present 
work uses standard wavelet transforms on volumetric data 
but is not concerned with representing the entire volume. 
We retain only the minimal number of wavelet coefficients 
necessary to represent a surface. 

Multiresolution techniques have also been investigated 
in the implicit surface literature. Velho et. al. [25] proposed 
a multi-scale implicit representation based on a biorthogo- 
nal B-spline wavelet transform. Their technique produces 
a representation based only on B-spline scaling functions. 
They eliminate the wavelet coefficients by projecting the 
wavelets onto the scaling basis functions at the next finer 
scale. This eliminates the wavelet coefficients at the cost of 
an increased number of scaling coefficients. The trade-off 
is that all modeling and rendering operations are performed 
on a hierarchical B-spline representation. The work does 
not explicitly treat the problem of compressing the result- 
ing data. 

Closely related to the present work is the technique of 
Grisoni [8, 71. They represent the field function of an im- 
plicit surface as a sampled volume and apply a wavelet 
transform to obtain a multiresolution representation. Fol- 
lowing Velho’s method, they project the wavelets onto the 
scaling basis at the next finer level producing a data struc- 
ture with only scaling coefficients. Their thresholding 
scheme operates on the projected coefficients. The location 
of the wavelet coefficients is not considered in the thresh- 
olding process. In some cases coefficients affecting the re- 
constructed surface may be thresholded. They propose a 
sparse representation based on a hash table storing the lo- 
cation and value of each coefficient in a packed three byte 
block. Coefficients at coarser scales require fewer bits for 
encoding position and thus increase the number bits avail- 
able for quantizing the coefficient value. The present work 
provides both a location-based thresholding scheme and a 
progressive bit ordering that reduces geometric error and 
improves compression. 



3. Signed-Distance Volumes 

A signed-distance volume encodes the minimum dis- 
tance to a surface for each sample point. The distance 
changes sign at the surface so that negative values lie on one 
side and positive values on the other. Given a closed shape, 
the sign determines whether a point is inside or outside of 
the shape. For isosurfaces, the notion of inside and outside 
is not always applicable as the surface may exit the distance 
volume. In these cases the sign of the distance is deter- 
mined by the scalar function without relying on notions of 
inside/outside. We formally define the signed distance from 
a surface Y as: 

where sign(.) is negative on one side of the surface and 
positive on the other. Most scanned objects are single closed 
components. An inside/outside relation can be defined for 
closed meshes if triangle normal vectors are oriented con- 
sistently. Isosurfaces from trilinearly interpolated scientific 
data also have this property although an isosurface may 
have a boundary on the boundary of the sampled volume. In 
such cases the boundary of the distance volume must coin- 
cide with the boundary of the scientific data. In the remain- 
der of the paper we will use d(z) to denote the approximate 
distance as computed by a distance transform algorithm. 

3.1. Error Metrics 

Surface errors are required to study the rate distortion 
properties of our algorithm. We adopt the L2 error metric 
used in [14] and measured by the METRO tool [4]. The 
error is defined by taking the maximum of D ( X , Y )  and 
D ( Y ,  X ) ,  where D ( X ,  Y )  is the distance between two sur- 
faces X and Y defined as: 

and D ( z ,  Y )  is the Euclidean distance from a point z E X 
to the closest point on Y .  All errors reported in this paper 
are relative to the bounding box diagonal length. 

4. The Distance Transform 

We apply a distance-transform algorithm to surfaces de- 
fined by triangle meshes and to isosurfaces from regularly 
sampled volumetric data. The transform produces an ap- 
proximation of the actual distance function based on the 
closest-point propagation algorithm of Breen [3]. We have 
modified Breen’s algorithm so that it runs in O(n)  time. The 
distance volume is initialized with closest-point information 
for all cells intersecting the surface to be encoded (the zero 

Table 1. Properties of distance samples 

set). These are the only explicit computations with respect 
to the input surface. Once the zero set is initialized the prop- 
agation algorithm assigns the closest points to the rest of the 
volume samples. The zero set signs are also initialized and 
this information is propagated along with the closest points. 

The propagation technique is essentially a point sam- 
pling approach, as the approximation is produced with re- 
spect to the initial set of closest points in the zero set. We 
begin by describing the propagation algorithm, then de- 
scribe the zero set initialization methods for scanned and 
scientific surfaces. 

4.1. Closest Point Propagation 

The distance transform operates on a volume of regu- 
larly spaced samples. Let s denote a sample of a distance 
volume. Table 1 lists the properties of a distance sample s. 
The output of the algorithm is a regular volume of signed 
distance values. 

The closest point propagation algorithm relies on the fol- 
lowing heuristic: the closest point of a sample s will in 
most cases be geometrically close to the closest points of 
the neighbors of s. The propagation algorithm is as follows: 
For all distance samples s: 
Initialize the zero set of the distance 
field as described in the following 
sections. 

d(s) = maxfloat 

Place all zero set samples in a FIFO 

while Q is not empty do 
queue Q 

Let s t front(&) 
For each 26-neighbor t of s do 

If Ilcp(s) - tll < d( t )  then 
CP(t) + CP(S> 
d(t) + Ilt - CP(t>II 
Place t onto back of Q 

If amb(s) = false then sn(t) t sn(s) 

Breen et. al. presents a method based on a priority-queue 
that always examines the sample with the smallest distance, 
insuring that each sample is visited only once by the algo- 
rithm. This leads to an expected running time of O(n log n) 
where n is number of samples in the distance volume. The 
algorithm presented here computes the same approximate 
distance volume, but may set the distance value of a sample 



multiple times. In our experiments, the number of updates 
per distance sample tends towards one as the resolution of 
the distance volume increases. For the data shown in this 
paper each distance sample is updated only 1.1 times on 
average. Thus, the algorithm runs in time O(n) on these 
surfaces because a simple queue provides constant time ac- 
cess. 

4.2. Zero Set Initialization of Isosurfaces 

Our implementation can produce signed-distance vol- 
umes of isosurfaces defined on regularly sampled scalar 
fields. Instead of formally defining the isosurface with re- 
spect to trilinear interpolation, we compute closest points 
based on local gradient estimates. The distance approxima- 
tion is constructed at the same resolution as the initial scalar 
field. The algorithm examines each volume cell in the scalar 
field. If the cell contains the isosurface, then the distance 
samples at the cell corners are initialized with closest point 
information. Once a distance sample has been initialized it 
is not reinitialized later for another incident cell. 

We denote the scalar field by f(s). Let fo denote the iso- 
value of the desired isosurface. We define a linear approx- 
imation about a sample s as f(s') = f(s) + Vf(s)(s' - s) 
and compute the closest point: 

(3) 

The scalar field gradient at a given sample point s is es- 
timated by central differencing. The sign of the distance 
is positive if f(s) > fo and negative otherwise. This ap- 
proximation is inaccurate for high curvature regions but can 
be computed very efficiently. Greater accuracy can be ob- 
tained by performing Newton iterations, or by extracting a 
mesh and applying the technique in the next section. 

4.3. Zero Set Initialization of Meshes 

The zero set initialization for triangle meshes operates 
on individual triangles. The algorithm does not use edge 
or vertex adjacency information. In the pseudocode below, 
cell-width is defined as the distance between distance sam- 
ples in the z, y, and z directions. The zero-set initialization 
algorithm proceeds as follows: 
For every triangle T in the input mesh: 

Compute the triangle bounding box 
defined by ( zmin,  Ymin, Zmin) and 
(zmar , ymaz, zmar) 

Reduce (zmin, ymin, Zmin) by cell-width 
Increase (zmar, ymar, zmaz) by cell-width 
For each sample s in the adjusted 
bounding box: 

b C a 

Figure 2. Zero set initialization for triangle 
meshes: the sign of a distance sample is de- 
termined using the vector p' from the closest 
point to the sample and the triangle normal 
vectors a. 

Compute cp(s) on T 
Record whether cp(s) lies on a 

Let 6 = Ilcp(s) - SI] 
If 6 5 ,/3 * cell-width and 6 < d(s) 

face, edge, or vertex. 

then : 
place the sample on the queue 
of zero set samples. 

Set a flag indicating that 
the sample is queued to 
prohibit duplication. 

Set sn(s) based on whether cp(s) 
lies on a face, edge, or 
vertex as explained below. 

The sign of a given sample is computed based on the lo- 
cation of its closest point (vertex, edge, or face). Figure 2a 
shows the simplest case where the closest point lies on a 
face. In this case the sign is given by the sign of n' -$where 
n' is the triangle normal and $is the vector from the clos- 
est point to the distance sample. If the closest point lies on 
an edge as in Figure 2b, then there are are two dot products 
(one for each triangle sharing the edge). The absolute values 
of the dot products are compared and the sign of the larger 
dot product is taken. Finally, a closest point which coincides 
with a vertex of the mesh as in Figure 2c may be ambiguous 
if some dot products are negative and others are positive. In 
these cases the distance sample is marked as ambiguous and 
no sign information is propagated for it. After the distance 
transform has completed the ambiguous samples are revis- 
ited and the following heuristic is applied: the signs of the 
26-neighbors are examined and the sign of the majority of 
the neighbors is assigned to the sample. Our method is very 
similar to the technique in Huang et. al. [12]. However, 
their algorithm does not detect the ambiguous vertex clos- 
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Figure 3. (Left) Decomposition filter bank with 
low pass filter fi and high pass filter g. (Right) 
Reconstruction filter bank with low pass filter 
h and high pass filter g. 

est points and may initialize the incorrect sign. 

5. Wavelet Transforms 

A wavelet transform [17] decomposes a signal into a se- 
quence of wavelet coefficients representing the details of the 
signal at several levels of resolution. These coefficients are 
often of small value and can be compressed efficiently. 

5.1. Fast Wavelet Transform 

We use the fast wavelet transform of Mallat [16] to gen- 
erate multiresolution representations. The left half of Fig. 3 
shows one step of decomposition algorithm. At each step a 
low pass filter h produces a set of scaling coefficients (uj+l)  
which coarsely approximate the input data. Additionally, 
a high pass filter 3 produces a set of wavelet coefficients 
(dj+l) representing the details lost in the coarse approxi- 
mation. These two filtering steps are repeated recursively 
on the coarse approximations to obtain a multiresolution 
representation. At each stage the size of the data is down 
sampled by a factor of two. We will use the term subband 
to refer to a set of wavelet coefficients generated by one step 
of the transform. 

The original data can be reconstructed by reversing the 
process with another set set of filters h and g. The right 
half of Fig. 3 shows one reconstruction step. Both fil- 
ters are preceded by an up sampling by two which in- 
serts zeros between each pair of input values. The low 
pass filter h, when combined with up-sampling, is simi- 
lar to a subdivision operator, smoothing coarse approxima- 
tions. The high pass filter g re-introduces the details en- 
coded by 3 and enables exact reconstruction of the data. In 
the present work we use the linear B-spline wavelets with 
h[n] = 1/8 (-1, 2, 6, 2, - l), h[n] = 1/2 (1, 2, l), 
3[n] = 1/2 (1, -2, l), andg[n] = 1/8 (1, 2, -6, 2, 1). 

The 2D extension of the algorithm in Fig. 3 is shown 
in Fig. 4. The one dimensional transform is alternately ap- 
plied to each dimension, creating subbands 1 and 3 in the 

Figure 4. Two dimensional extension of the 
filter bank by alternating the directions of the 
filtering steps. 

2 direction (d l ,  d3) and subbands 2 and 4 in the y direc- 
tion ( d ~ ,  d4). The 3D case follows the same pattern as Fig. 
4 except that the transform directions cycle through the 2, 
y, and z directions. Some readers may note that in image 
processing applications the high pass coefficients resulting 
from the 5 direction filtering are processed by the filter bank 
a second time in the y direction yielding three sub-bands 
per level in the 2D case and seven subbands in 3D (after a z 
pass). In contrast, our approach generates one subband per 
level for data of any dimension. Our method requires fewer 
computations, and in our tests produces better compression. 

5.2. Thresholding 

The goal of the thresholding step is to reduce the num- 
ber of values that need to be coded by setting insignifi- 
cant wavelet coefficients to zero. An aggressive threshold- 
ing method is required for efficient distance volume com- 
pression. Our distance-based thresholding method removes 
all wavelet coefficients that do not contribute to the recon- 
structed surface. Thresholding too many coefficients could 
result in spurious surface components appearing in the dis- 
tance field. Currently, we do not have a formalism that al- 
lows us to prove that new components or handles are not 
added under the method we present. For complicated sur- 
faces a verification step can be performed that checks the 
original distance volume against the distance volume recon- 
structed after the thresholding step and warns of any irreg- 
ularities. The thresholding method presented here did not 
modify the topology of surfaces we have tested. 

Figure 5 illustrates the thresholding operation in 2D. 
On the left is the wavelet transformed signed-distance field 
showing five wavelet subbands. On the right we have 
the original signed-distance field as computed for the two 
curves shown inside. The support of a wavelet coefficient 
in ds is shown as the shaded rectangle. The wavelet coeffi- 
cient in d g  can be thresholded because its support does not 
effect the curves being represented. 

Two methods are used to determine whether a given 
wavelet coefficient should be set to zero. First, a bound- 
ing sphere is computed that contains the wavelet support. 
The distance value at the center of the sphere is sampled, 
and if this distance is greater than the radius, the coefficient 
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Figure 5. Distance based thresholding: the 
coefficient in d5 is set to zero because its sup- 
port shown on the right does not overlap the 
curves. 

is set to zero. If the radius of the bounding sphere is greater 
than the distance value, then the surface must intersect the 
sphere. For these coefficients, the distance values in the 
support of the wavelet are examined, and the coefficient is 
set to zero if all of the distance values are the same sign. 

6. Zero Tree Coding 

A progressive wavelet coder should send the most signif- 
icant bits of the most significant wavelet coefficients first. 
This amounts to encoding the locations of the significant 
coefficients as efficiently as possible. A zero tree coder [22] 
generates a progressive bit stream by utilizing the observa- 
tion that wavelets decay in magnitude at finer resolutions. 
That is, if one defines a hierarchy of wavelet coefficients 
from one subband to the next it is likely that the child coef- 
ficients will be smaller than the parent. 

A zero tree is defined as a hierarchy of coefficients for 
which c 5 T for every coefficient c in the hierarchy, where 
T is a threshold used to determine the significance of any 
given coefficient. The zero tree hierarchy is based on obser- 
vations of the decay of wavelet coefficients [22] in image 
data and is independent of the support of the wavelets. The 
zero tree relation is defined for a quadtree-like hierarchy 
in 2D and an octree-like hierarchy in 3D. Figure 6 depicts 
the 2D case for our subband ordering. Two hierarchies are 
shown, one for the 2 direction (subbands 1, 3, and 5 )  and 
one for the y direction (subbands 2 and 4). A zero tree coder 
is particularly well suited to the distance based thresholding 
method as the thresholded coefficients are spatially contigu- 

The coding algorithm repeatedly traverses the wavelet 
coefficients in a predefined order. At any point in the cod- 
ing process the wavelet coefficients are divided into two 
groups: those that are not yet significant, and those that 
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Figure 6. Hierarchies of wavelet coefficients 
for the zero tree relation. If all of the coef- 
ficients are less than a given threshold, the 
entire tree can be skipped until later in the 
coding process. 

have been found to be significant during the current traver- 
sal or a preceding one. The threshold T starts at half the 
value of the largest wavelet coefficient, and is divided in 
half after each traversal. Thus, each traversal progressively 
adds more wavelet coefficients to the significant group and 
removes them from the insignificant group. A zero tree is 
coded by a single symbol the informs the decoder that every 
coefficient in the hierarchy is insignificant with respect to 
the current threshold. Zero trees efficiently encode the po- 
sitions of the insignificant coefficients. Once a coefficient 
is deemed significant, its sign bit and its most significant 
bit are transmitted. On each subsequent traversal another 
bit is added to its representation. Our implementation fol- 
lows [22] which contains pseudocode and a small worked 
example of-the algorithm. 

7. Results 

We demonstrate our system on two surfaces. First, a 
horse model [5] provides a comparison of the performance 
of the signed-distance volume approach with the subdivi- 
sion surface approach in [14]. Second, we compress a large 
isosurface to demonstrate the ability of our system to rep- 
resent complex surfaces with many components. All file 
sizes are the result of applying the gzip utility to the pro- 
gressive bit-streams resulting from our zero tree coder. The 
images referenced in this section were generated by extract- 
ing a triangulation from the distance field and rendering the 
triangles with smooth (Gouraud) shading. 





Some improvement is possible if the distance samples are 
reordered to improve cache coherence when visiting a sam- 
ple’s 26-neighborhood. 

The wavelet transform required 1 - 10 seconds depend- 
ing on the resolution of the data. This range of times reflects 
data sets capable of fitting in the main memory of our work- 
station. The distance based thresholding required 14 sec- 
onds for a 32x68~57 distance volume of the horse model 
and 52 seconds for a 96x208~173 volume. The threshold 
time was roughly 2 minutes for the 256x256~384 turbu- 
lence data. The turbulence data was processed on an Onyx 
machine capable of holding all run time data structures in 
main memory. The threshold times are the result of examin- 
ing samples of the distance volume multiple times for each 
wavelet coefficient near the surface. The zero tree coder 
took from 0.5 to 3 seconds for the horse model at various 
resolutions and geometric errors. The zero tree coder took 
between 1 and 20 seconds for the isosurface depending on 
the number of bits produced. 

8. Discussion 

Our algorithm successfully produces progressive encod- 
ings of signed-distance volumes. However, subdivision sur- 
face approaches still produce more compact surface repre- 
sentations for smooth surfaces. One drawback of our cur- 
rent implementation is the use of the gzip utility as a back- 
end. This is less efficient than an entropy coding technique 
specifically tailored for wavelet transforms. An arithmetic 
coder applied to the coefficient magnitudes should reduce 
the file sizes even further. 

The geometric error for small bit counts can be improved 
by modifying the orderirlg of the bits. A standard zero tree 
coder assumes an L, error because the significance test 
depends only on the value of the coefficient and not on 
the size of the corresponding wavelet support. It is possi- 
ble for wavelet coefficients at the finest level to have bits 
emitted along with coefficients at a coarser level. However, 
the mean-squared geometric error metric integrates over the 
surface area, implying that the significance test should in- 
clude the support of the wavelet. Incorporating the support 
of the wavelets would insure that all of the early bits in- 
crease the accuracy of the coarser scale wavelets instead of 
potentially adding fine scale wavelets, thus improving the 
overall error. 

The encoding process should be modified so that the 
topology is simplified at early stages and is refined as more 
bits are added. Our implementation does not track topology 
changes and allows both simplifications and refinements to 
occur. This can produce holes in thin shapes at small num- 
bers of bits that disappear later in the decoding process. A 
method for ordering the topology changes and increasing 
the significance of the wavelet coefficients affecting those 

areas could mitigate this problem. Topological modifica- 
tion requires that new error metrics be constructed that do 
not overly penalize surfaces for which many small compo- 
nents have been eliminated in favor of larger ones. The er- 
ror metric used in this paper over-emphasizes the errors of 
small components that have been removed at early stages of 
reconstruction. 

Finally, an important area of future work is to char- 
acterize the trade offs between low-order compact basis 
functions and higher order basis functions with large sup- 
port. For smooth functions, higher order wavelets are more 
efficient and exhibit faster convergence than lower order 
wavelets. However, higher order basis functions have larger 
support, resulting in fewer thresholded coefficients. 

9. Conclusion 

We have presented an algorithm that produces progres- 
sively compressed signed-distance volumes. Our method 
does not require a re-meshing step and can handle surfaces 
with an arbitrary number of components given an appro- 
priate sampling rate. Our representation does not explicitly 
represent the surface topology, enabling topological mod- 
ification without complicating the data structures used in 
the implementation. We believe our approach is best suited 
to surfaces with complicated topology and many compo- 
nents. Time-varying surfaces pose many problems that can 
be overcome with an implicit representation. We believe 
our compression techniques can be extended to the time do- 
main to produce an efficient yet simple surface representa- 
tion. 
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